Stability of the Kinematically Coupled Β-scheme for Fluid-structure Interaction Problems in Hemodynamics
نویسندگان
چکیده
It is well-known that classical Dirichlet-Neumann loosely coupled partitioned schemes for fluid-structure interaction (FSI) problems are unconditionally unstable for certain combinations of physical and geometric parameters that are relevant in hemodynamics. It was shown in [18] on a simple test problem, that these instabilities are associated with the so called “added-mass effect”. By considering the same test problem as in [18], the present work shows that a novel, partitioned, loosely coupled scheme, recently introduced in [11], called the kinematically coupled β-scheme, does not suffer from the added mass effect for any β ∈ [0, 1], and is unconditionally stable for all the parameters in the problem. Numerical results showing unconditional stability are presented for a full, nonlinearly coupled benchmark FSI problem, first considered in [31].
منابع مشابه
Coupled BE-FE Scheme for Three-Dimensional Dynamic Interaction of a Transversely Isotropic Half-Space with a Flexible Structure
The response of structures bonded to the surface of a transversely isotropic half-space (TIHS) under the effect of time-harmonic forces is investigated using a coupled FE-BE scheme. To achieve this end, a Finite Element program has been developed for frequency domain analysis of 3D structures, as the first step. The half-space underlying the structure is taken into consideration using a Boundar...
متن کاملA kinematically coupled time-splitting scheme for fluid-structure interaction in blood flow
We present a new time-splitting scheme for the numerical simulation of fluid-structure interaction between blood flow and vascular walls. This scheme deals in a successful way with the problem of the added mass effect. The scheme is modular and it embodies the stability properties of implicit schemes at the low computational cost of loosely coupled ones.
متن کاملAn Operator Splitting Approach to the Solution of Fluid-Structure Interaction Problems in Hemodynamics
We present a loosely coupled partitioned method for the numerical simulation of a class of fluid-structure interaction problems in hemodynamics. This method is based on a time discretization by an operator-splitting scheme of the Lie’s type. The structure is assumed to be thin and modeled by the Koiter shell or membrane equations, while the fluid is modeled by the 3D Navier-Stokes equations for...
متن کاملInvestigation of Fluid-structure Interaction by Explicit Central Finite Difference Methods
Fluid-structure interaction (FSI) occurs when the dynamic water hammer forces; cause vibrations in the pipe wall. FSI in pipe systems due to Poisson and junction coupling has been the center of attention in recent years. It causes fluctuations in pressure heads and vibrations in the pipe wall. The governing equations of this phenomenon include a system of first order hyperbolic partial differen...
متن کاملExistence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls
We study a nonlinear, unsteady, moving boundary, fluid-structure interaction (FSI) problem arising in modeling blood flow through elastic and viscoelastic arteries. The fluid flow, which is driven by the time-dependent pressure data, is governed by 2D incompressible Navier-Stokes equations, while the elastodynamics of the cylindrical wall is modeled by the 1D cylindrical Koiter shell model. Two...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014